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Abstract

Approximate matrix elements squared are given for all parton processes
involving a quark-antiquark pair plus four gluons. Detailed comparisons
are made between these results and the exact matrix elements for the sub-
processes involving a quark-antiquark pair and four gluons in four jet pro-
duction at hadron colliders. Together with Maxwell’s approximate result for
six gluon processes an excellent agreement is found for the shape and total
cross section of four jet production.

1 Introduction

Recently there has been a great deal of interest in four jet events at hadron col-
liders by both experimentalists[ll and theorists{2l. For four jet production all QCD
matrix elements exist in the literature!3! but intense computer usage is required to
calculate each partonic cross-section. Sometime ago, Maxwell4! gave a systematic
procedure to approximate multi-gluon cross-sections and he also suggested the use
of the effective-structure-function approxima.tionls] to describe processes involv-
ing quarks as well. However this approximation for the fermionic cross-sections is
known to become progressively worse with an increasing number of partons.

Here we generalize the multi-gluon approximation of Maxwell and give approx-
imate cross-sections for those processes involving a quark-antiquark pair plus four
gluons. The generalization to larger numbers of gluons being straightforward and
is given in ref.[6]. Detailed comparisons are made with the exact matrix elements
and with the predictions of the effective-structure function approximation. When
our results are combined with the approximate six-gluon cross-section of Maxwell
they provide a powerful tool for analyzing the four-jet events of hadron colliders.

1Invited talk presented by SP at The 7th Topical Workshop on Proton-Antiproton Collider
Physics, Fermilab, Batavia, IL; June 20-24, 1988.

2Fermilab is operated by the Universities Research Association Inc. under contract with the
United States Department of Energy.
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2 Approximate Cross Sections

Our starting point is the exact non-zero tree level matrix element squared,
to leading order in the number of colors, for the processes involving six gluons
or quark-antiquark plus four gluons which maximally violates the conservation of
helicity:

e.g. gtgt o gtgtgtet, gtgt —qtgtgtgt and gtgm —¢tTgTg"

The matrix elements squared were given by Parke and Ta,ylorm'[sl for the purely
gluonic process and by the authors(® for the quark-antiquark plus four gluon pro-
cess and can be simply given in terms of the elementary variables, S;; = 2p; - p;.
For the six gluon process the color sum for the matrix element squared for the sum
of the maximally helicity violating amplitudes is given by
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where ¥ crm: is the sum over all non-cyclic permutations of the gluons (1,2...6).
The similar expression for the quark-antiquark plus four gluons is
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where ey is now the sum over all permutations of the four gluons and g, are
the momenta of the quark and antiquark respectively.
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For the six gluon process, Maxwelll¥) has given us a method for including the
contribution from the more complex helicity conserving amplitudes. His approxi-
mation is to multiply the matrix element squared for the helicity violating processes
by a factor, x4, such that the product has the Altarelli-Parisil0 residue for the
collinear pole of the pair of gluons with the smallest |S;;|. Maxwell refers to this
procedure as infrared reduction. For the purely gluonic process, the multiplication
factor is
(1+R) (1+2*+(1-2)%) 3

(R+ 2%+ (1 —2)%) (3)
where R and z are determined by the pair of gluons (, 3) which have the minimum
|S;;] in the following way?
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3This prescription is clearly not Lorentz invariant, but the violation of Lorentz invariance is
an effect of order s;; /p?pg-’, which can be neglected consistently within the approximation.
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In analogy with Maxwell’s method one can show that the infrared reduction
procedure applies to processes with a quark-antiquark pair plus gluons. Here the
multiplication factor depends on the type of particles which make up the minimum
|S;;| . For the case where the particles with the minimum |S;;| are both gluons,
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as before, but with
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If the pair with the minimum dot product is a quark and a gluon then
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The result for an antiquark-gluon pair is the same as the above quark-gluon pair
but with each fermion momentum replaced by the appropriate anti-fermion mo-
mentum.

For the situation in which the minimum |S;;| pair is made up of a quark and
an antiquark the multiplication factor is

x}s = (L+R) (9)
where
G = q+43,
... 5%
R Zt(] 1% (10)
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Thus our approximation is equal to x - 3 |M**!|? times a weight factor which
averages the incoming colors and helicities and also provides the appropriate sta-
tistical factor for identical particles. All of these results can be generalized to
processes with more than four partons in the final state by expressing the approx-
imate cross-section as a product of the maximally helicity-violating cross-section
times more  factors, two for a seven-parton process, three for an eight-parton
process and so on.

3 The Comparison

To compare our results with the exact matrix elements squared we have looked
at the processes gg — 9999 , 99 — 9999 , 99 — 3999 and gg — §qggin a proton
- antiproton collider at 1.8T eV, the Fermilab Tevatron. We omit the results for the
q§ — gggg process because its rate is very small. Processes with two quark-pairs
can be approximated in a similar way by using the simple helicity-violating matrix
elements given in ref. [11], but their rate is totally negligible.

We have used a fixed set of structure functions throughout, Duke and Owens!12!
(A = 200MeV), and the cuts on the partonic jets for the transverse momentum, Pr,
pseudo-rapidity, ¥, and separation of the jets, AR, are as follows:

Pr > 25GeV
ly| < 3.5

AR =+/A¢?+Ay2 > 08. (11)

We choose the Q2 scale for the QCD evolution to be the average pr of the event:
Q? = (T pr/4)®. For both the exact and the approximate matrix elements we

have plotted three differential cross sections, % versus Pr, ;c-;%n— versus cosfys,
and ?ﬁ% versus Py in Figures 1 through 3. Pr is the transverse momentum of
each jet. P = 23 |p,.| with p,, the momentum of the i-th jet perpendicular
to the plane given by the beam and the jet of largest pr. The angle 833 is the
angle between the second and third highest energy jets in the center of mass of
the incoming partons. For each differential cross-section there are four plots each
appropriate for proton anti-proton collisions with five flavors of light quarks:

(a) for the purely gluonic process,

(b) for all processes with quark (antiquark) gluon to quark (antiquark) plus
three gluons,

(c) for the process gluon gluon to quark antiquark plus two gluons and

(d) for the sum of these three.

The total rates for these processes are summarized in Table I.
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Figure 1(a)-(d): The differential cross sections do'/dPr versus Pr for the labelled
processes of four jet production at the Tevatron with the cuts given in eqn. (11).
The solid line is the approximation and the dotted line the exact result.

Table I: Cross Sections for Four Jet Production at the Tevatron.

Process Exact Cross Section | Approximate Cross Section
nanobarns nanobarns

(a) g9 — 9999 14 15
(b) g9 — 9999 21 20
(c)
(

99 — 9499 3 6
d) Total: Four Jets 38 41
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Figure 2(a)-(d): The differential cross sections do /dcosfz; versus cosfys for the la-
belled processes of four jet production at the Tevatron with the cuts given in eqn.
(11). The solid line is the approximation and the dotted line the exact result.

As is clear from Table I and from Figures (1) thru (3), the approximation
to the purely gluonic process and to the processes with one quark in the initial
state are extremely good, while the agreement between exact and approximated
results for the process with a quark-antiquark pair in the final state is rather poor.
Fortunately this last process has a small cross-section, and the induced error on
the full cross-section is marginal.
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Figure 3(a)-(d): The differential cross sections do/dPo,; versus Poy for the labelled
processes of four jet production at the Tevatron with the cuts given in eqn. (11).
The solid line is the approximation and the dotted line the exact result.

The main reason underlying the accuracy of these approximations is the dom-
inance of the helicity violating amplitudes over the helicity conserving ones. This
in fact guarantees the stability of the infrared reduction when extrapolated from
the collinear limit s;; — 0 to the observable kinematical configurations in which
si; # 0. This dominance holds for the gg — gg999 and qg — qggg processes. When
integrating over phase space the helicity conserving amplitudes contribute in aver-
age to 20-30% of the full amplitude. Even a 30% uncertainty in estimating them
(uncertainty coming from the extrapolation of the infrared reduction) would give
rise to an error no larger than 10% on the full amplitude.



4 The Effective Structure Function Approximation

We now compare our approximation of the quark cross-section to the effective-
structure-function approximation. This approximation amounts to assuming that
in most of the relevant phase-space the differential cross-sections for processes
initiated by gg, by gg and by gq or ¢g stand in a constant ratio:

dog, @ dogy : dogg = 1 1 4/9 : (4/9)% (12)

In this way the total cross-section, weighted by the appropriate structure functions,
reads:

40 = F(21)F(22)d04s, (13)

F(z) = g(z) + 4/9(g(=) + 4(=)), (14)

g(z) and g(z) being the gluon and quark structure functions.

This approximation is extremely good in the case of two partons in the final
state, but becomes less and less accurate when increasing the complexity of the final
state. Phenomenological applications of this approximation for multi-jet physics
were given by Kunszt and Stirling in ref. [13]. These authors, however, used a
simplified version of the multi-gluon approximation. Namely, they choose for the
n gluon process a constant value given by the ratio of the total number of non-
zero helicity configurations with the number of helicity-violating configurations
contributing to a multi-gluon process,

(2" —2n — 2)

Xks = A1) (15)

For n = 6 we have x%5 = 5/3.

We have compared the prediction for the gg — gggg process obtained through
the Kunszt and Stirling (KS) approximation and through the Maxwell (M) approx-
imation with the exact calculation, which in turn agrees with our approximation
(MP) within numerical (Monte Carlo) errors.

dodp = x%do?™ (16)
dokes = 4/9 xesdo?™ (17)
dodr = 4/9 x3,doy . (18)

The resulting distributions are shown in figs. 4 and 5. The total rates are as
follows:

0Lt = 21nb, odp =20nb, okg=30nb, o}y = 24nb. (19)
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Figure 4: Comparison of the differential cross sections for the subprocess gg —

gggg of our approximation (dots) versus the approximation of Kunszt and Stirling
together with the use of the effective structure function approximation (solid).

From these results we conclude that the effective-structure-function approxi-
mation tends to overestimate the contribution of quark-initiated processes. This
suggests that for a large number of partons the purely gluonic matrix elements
dominates over the matrix elements with quarks (this is not necessarily true of
the rates, because of the effect of the structure functions). However the mismatch
between the exact result (or our approximation) and the result of the effective-
structure-function approximation is certainly compatible with the intrinsic un-
certainty associated with these calculations, due to the absence of higher order
corrections, uncertainty in the choice of a,, of @% and of structure functions.
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Figure 5: Comparison of the differential cross sections for the subprocess gg —
gggg of our approximation (dots) versus the approximation of Maxwell together
with the use of the effective structure function approximation (solid).

5 Conclusions

In conclusion, we Have presented an approximation procedure to describe multi-
jet QCD processes. Our prescription completes Maxwell’s work on multi-gluon
processes by generalizing it to processes involving quarks as well. The calculation
of four-jet production in pj collisions at 1.8 TeV shows excellent agreement between
the exact results and our approximation. The agreement holds for both total rates
and differential distributions. This is a net improvement over calculations based
on the effective-structure-function approximation, with which we have compared
our results. Qualitative arguments suggest that this agreement should persist for
higher order processes.



On completion of this manuscript we became aware of a preprint by C. Maxwelll14]
which contains similar results to this paper.
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